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Lecture 6:

Counting principles and combinatorics; 
o Basic Counting:  Sum and Product Rules: when can we add and 

when can we multiply 
o Counting considered as sampling and constructing outcomes; 

selection with and without replacement; 
o Counting sequences:

• Enumerations and Cross-products;
• Permutations;
• K-Permutations
• Permutations with Duplicates
• Circular Permutations 



Finite, Equiprobable Probability: Counting is the Key!

Recall the rule for finite, equiprobable 

probability spaces:

To work with this definition, we will need to calculate the number of  elements in 

A and S and we will analyze this according to how we “constructed” the sample 

points in S and in A during the random experiment. 

Thus, we need to investigate how to

COUNT finite sets....   first we will figure out

when we can multiply and when we can add....

S

A



Counting 101:   The Product Rule

The Product Rule (aka  The Multiplication Principle in your text)

If  we have N sets  S1, S2, ...., SN and want to choose exactly 1 element from each 

set, we can do this in 

|S1| * |S2| * .... *  |SN|

ways.  

Example:  Suppose an ID tag for a widget consists of  two 
capital letters and 3 digits. How many different ID tags are 
there?

Answer:    There are 26 capital letters and 10 digits, thus:

26 * 26 * 10 * 10 * 10 = 676,000

Compare with the 
rule for multiplying 
probabilities of 
independent events!



The Sum Rule: When can we add?

Consider the following problem:  Draw a single card from a standard deck. What 

is the probability that it is a 10 OR is an Ace?

Let T = “The card is 10” and A = “The card is an Ace.”   Let’s count!

S = all cards

T A
|T| = 4

|A| = 4

4 + 4 = 8 

P(T and A) 



Now consider the this problem:  Draw a single card from a standard deck. What is 

the probability that it is Red OR is an Ace?

Let R = “The card is Red” and A = “The card is an Ace.”   Let’s count!

S = all cards

R A

Red 
Cards

|A| = 4

|R| = 26

4 + 26 = 30 ??

Problem: We 
double counted the 
cards in the 
intersection!

The Sum Rule



New Sum Rule:

For any two events A and B, 

|A ∪ B| = |A| + |B| - |A ∩ B| 

How about for 3 events?  Let S = {000, 001, 010, ....., 110, 111},  

A = numbers in form 1xx, B = form x1x, and C = form xx1

|A| = 4,    |B| = 4,     |C| = 4

|A ∪ B | = 4 + 4 - 2  = 6

|A ∪ C| = 4 + 4 - 2  = 6

|B ∪ C| = 4 + 4 - 2  = 6

|A ∪ B ∪ C| = 4 + 4 + 4 – 2 – 2 – 2 = 6 ??

The Sum Rule: Inclusion/Exclusion



Sum Rule for 3 events: 

|A ∪ B ∪ C| = |A|       + |B|      + |C|

- |A ∩ B| - |A ∩ C| - |B ∩ B| 

+ |A ∩ B ∩ B |

Generalized Sum Rule:

ADD intersection of  all ODD numbers of  events (including 1)

SUBTRACT intersection of  all EVEN number of  events

The Sum Rule: Inclusion/Exclusion



The Sum Rule: Inclusion/Exclusion

Example:

Let S = {1, 2, ..., 30},  A = numbers divisible by 2,

B = numbers divisible by 3, and C = numbers divisible by 5. 

Calculate  |A ∪ B ∪ B|           A = {2,4,6,8,10,12,14,16,18,20,22,24,26,28,30}

B = {3,6,9,12,15,18,21,24,27,30}               C = {5,10,15,20,25,30}

|A| = 15,   |B| = 10,   |C| = 6

|A ∩ B| = 5

|A ∩ C| = 3

|B ∩ C| = 2

|A ∩ B ∩ C| = 1

|A ∪ B ∪ B| = 15 + 10 + 6

- 5 – 3 – 2    +  1  = 31 – 10 + 1 = 22    



Counting 102:  Finite Combinatorics

The way in which we “construct” the sample space almost always follows what we 
might characterize as a sampling process:

(multi)set 
(unordered)

sequence 
(ordered)



Finite Combinatorics
The important issues to note are (and you 
should figure them out in this order):

(A)  Is the selection done with or without replacement?

Examples of with replacement: 

How many enumerations of …..
Choose letters for a password…
Flip a coin or toss a die ….

Examples of without replacement: 

How many permutations of …..
Choose a committee of 5 people from a group of 100 people…..
Deal five cards for a hand of Poker…..
Choose letters for a password, with no repeated letters…..

When the issue might be unclear, the problem statement will specify, e.g.,  
“Suppose you have a bag of 3 blue and 2 red balls and you choose 2 with replacement… “



Finite Combinatorics
The important issues to note are (and you 
should consider them in this order):

(B) Is the outcome ordered or unordered?

Ordered outcomes are sequences: 

Enumerations and Permutations
Strings of characters
Rows of seats

Unordered outcomes are sets (no duplicates) or bags/multisets (allow duplicates)

Hands in card games                                 // these are Combinations, covered next lecture!
Groups of people 

When it might be unclear, the problem statement will say something specific about what you are 
creating:  
“How many sequences of ….”                       “How many permutations of … 
“Two



Finite Combinatorics
We will organize this along the dimensions of  
o ordered vs unordered and 
o selection with replacement vs without.
and we will consider the role of duplicates when appropriate.

These problems have names you should be familiar with from CS 131:

For each of these I will provide a canonical problem to illustrate; I STRONGLY 
recommend you memorize these problems and the solution formulae, and when 
you see a new problem, try to translate it into one of the canonical problems. 



Finite Combinatorics
Enumerations

The simplest situation is where we are constructing a sequence with replacement, such as 
where the basis objects are literally replaced, or consist of information such as symbols, which 
can be copied without eliminating the original. 

Canonical Problem: You have N letters to choose from; how many words of K letters are 
there?

Formula: NK

Example: How many 10-letter words all in lower case? 2610

A more general version of this involves counting cross-products:

Generalized Enumerations: Suppose you have K sets   S1, S2, ..., Sk. What is the size of the 
cross-product 
S1 x S2 x ... x Sk? 

Solution: |S1| * |S2| * ... * |Sk| 

This is just the Product Rule!



Finite Combinatorics



Finite Combinatorics
Permutations

Next in order of difficulty (and not yet very difficult) are permutations, where
you are constructing a sequence, but without replacement. This explains what 
happens when the basis set is some physical collection which can not (like letters) 
simply be copied from one place to another. 

The most basis form of permutation is simply a rearrangement of a sequence into a 
different order.  The number of such permutations of N objects is denoted P(N,N). 

Canonical Problem 1(a): Suppose you have N students S1, S2, ..., Sn. In how many 
ways can they ALL be arranged in a sequence in N chairs?

Formula: P(N,N) = N* (N-1) * ... * 1 = N!

Example: How many permutations of the word "COMPUTER” are there?         

Answer: 8! = 40,320



Finite Combinatorics



Finite Combinatorics
K-Permutations

If we do not simply rearrange all N objects, but consider selecting K <= N of them, 
and arranging these K, we have a K-Permutation indicated by P(N,K). 

Canonical Problem 1(b): Suppose you have N students S1, S2, ..., Sn. In how many 
ways can K of them be arranged in a sequence in K chairs?

Formula:

Example: How many passwords of 8 lower-case letters and digits can be made, if 
you are not allowed to repeat a letter or a digit?

Answer: The “not allowed to repeat” means essentially that you are doing this 
”without replacement.” So we have P(36,8) = 36! / 28! = 1,220,096,908,800.

Note: The usual formula at the extreme right is extremely inefficient. The first 
formula is the most efficient, if not the shortest to write down!

K terms



Finite Combinatorics



Finite Combinatorics
Counting With and Without Order

Before we discuss combinations, let us first consider the relationship 
between ordered sequences and unordered collections (sets or multisets)
For example, consider a set 

A =  { S, E, T }

of 3 letters (all distinct). Obviously there is only one such set. 

But there are 3! = 6 different sequences (=permutations)  of all these letters:

S E T
S T E
E S T
E T S
T S E
T E S

Set = unordered, no duplicates



Finite Combinatorics

The Ordering Principle

If  A is an unordered collections (set) consisting of N distinct elements, then 
there are N! ordered collections (sequences) of A.  

Question:  If   A =  { S, E, T },    how many sets of 2 distinct letters can we choose 
from A?       Note:  N = 2. 

Answer:  Hm…. Let’s just count:  { S, E }, { S, T }, { E, T }… there are  M = 3. 

Question:  How many sequences of two distinct letters can we choose from A?

Answer: Again, let’s just count:
All orderings of   { S, E }    gives us    SE,   ES            // 2! ways to order each       
All orderings of   { S, T}     gives us    ST,   TS
All orderings of   { E, T }    gives us    ET,   TE     

So:  there are 3*2! = 6 possible sequences derived from these three sets. 



Finite Combinatorics
The Unordering Principle

If there are M ordered collections (sequences) of the N elements in A, then 
there are M/N! unordered collections (sets) of A. 

When all elements are distinct, as in our previous example, then obviously, 
M/N! = N!/N! = 1.  

The basic idea here is that we are correcting for the overcounting when we 
assumed that the ordering mattered. Therefore we divide by the number of 
permutations. 

This principle also applies to only a part of the collection:

Example:  Suppose we have 3 girls and 3 boys, and we want to arrange them in 6 
chairs, but we do not care what order the girls are in. How many such arrangements 
are there?

Answer: There 6! permutations, but if we do not care about the order of the 
(sub)collection of 3 girls, then there are  6!/3! = 6*5*4 = 120 such sequences. 



Finite Combinatorics
Permutations with Repetitions

As another example of the Unordering Principle, let us consider what happens if you 
want to form a permutation P(N,N),  but the N objects are not all distinct. An 
example may clarify: 

Example: How many distinct (different looking) permutations of the word “FOO” 
are there?

If we simply list all 3! = 6 permutations, we observe that because the ‘O’ is 
duplicated, and we can not tell the difference between two occurrences of ‘O’s, there 
are really only 3 distinct permutations. This should be clear if we distinguish the two 
occurrences of ’O’ with subscripts:

F O1O2                       FOO                 FOO
F O2O1                       FOO          
O1F O2                       OFO                 OFO
O1O2F                OOF                 OOF 
O2F O1                       OFO
O2O1F                OOF

Sequences: O1O2
O1O2

Multiset:    { O, O }

There are 2! sequences, so
6/2! = 6/2 = 3. 



Finite Combinatorics
Permutations with Repetitions

If you have N (non-distinct) elements, consisting of m (distinct) elements with 
multiplicities K1, K2, ..., Km, that is,  K1 + K2 + ... + Km = N, then the number of 
distinct permutations of the N elements is

Example: How many distinct (different looking) permutations of the word 
“MISSISSIPPI” are there?

Solution:  There are 11 letters, with multiplicities:
M:  1
I:  4
S: 4
P: 2

Therefore the answer is 



Finite Combinatorics



Finite Combinatorics
Circular Permutations

A related idea is permutations of elements arranged in a circle. The issue here is that 
(by the physical arrangement in a circle) we do not care about the exact position of 
each elements, but only “who is next to whom.”  Therefore, we have to correct for 
the overcounting by dividing by the number of possible rotations around the circle. 

Example: There are 6 guests to be seated at a circular table. How many 
arrangements of the guests are there?

Hint: The idea here is that if everyone moved to the left one seat, the arrangement 
would be the same; it only matters who is sitting next to whom. So we must factor 
out the rotations. For N guests, there are N rotations of every permutation. 

Solution: There are 6! permutations of the guests, but for any permutation, there are 
6 others in which the same guests sit next to the same people, just in different 
rotations. 

Formula: There are                             

circular permutations of N distinct objects.  



Finite Combinatorics
Application of Enumerations and Permutations

The Birthday Problem:  What is the probability that at least two students 
in a class of size K have the same birthday? Assume all birthdays are equally 
likely throughout the year and each year has 365 days. 

Our class has 45 students.  What is the probability that two people in the class have 
the same birthday?



Finite Combinatorics
Application of Enumerations and Permutations

The Birthday Problem:  What is the probability that at least two students 
in a class of size K have the same birthday? Assume all birthdays are equally 
likely throughout the year and each year has 365 days. 

Solution:  There are 365 possibilities for each student. Thus, the sample space has 
365K points (it is an enumeration!).  The possibility that no two students share a 
birthday is P(365,K) (it is a K-permutation). 

Using the inverse method, we compute

For K = 45 (our class), we have

2009920596168459460646615532526416877793541798531176014539404356861969016257818142
3015166728873737156391143798828125

1186337553340567432645062848996799454845296199089762703546649869088654086749882039
483873139419595040358400000000000

= 0.0590


